
www.manaraa.com

1The Design and Implementation of an OperatingSystem to Support Distributed MultimediaApplicationsIan Leslie, Derek McAuley, Richard Black, Timothy Roscoe,Paul Barham, David Evers, Robin Fairbairns, and Eoin HydenAbstractSupport for multimedia applications by general purpose computing platforms has been the subject of considerable research.Much of this work is based on an evolutionary strategy in which small changes to existing systems are made. The approachadopted here is to start ab initio with no backward compatibility constraints. This leads to a novel structure for an operatingsystem. The structure aims to decouple applications from one another and to provide multiplexing of all resources, not just theCPU, at a low level. The motivation for this structure, a design based on the structure, and its implementation on a number ofhardware platforms is described. I. IntroductionGENERAL purpose multimedia computing platforms should endow text, images, audio and video with equal status:interpreting an audio or video stream should not be a privileged task of special functions provided by the operatingsystem, but one of ordinary user programs. Support for such processing on a platform on which other user applicationsare running, some of which may also be processing continuous media, cannot be achieved using existing operatingsystems | it requires mechanisms that will consistently share out resources in a manner determined by both applicationrequirements and user preferences.Continuous media streams have two important properties. The �rst property is that their �delity is often dependentupon the timeliness with which they are presented. This temporal property of continuous media imposes the requirementthat code which manipulates the media data may need to be scheduled within suitable windows of time. The secondproperty is that they are often tolerant of the loss of some of their information content, particularly if it is knownhow the data is to be used (e.g. many compression schemes rely on human factors to achieve high compression rates).This informational property, without regards to its exact nature, may be exploited by systems which handle continuousmedia.The properties of the streams can be extended to the applications which process them; we have temporal requirementsfor such applications which are stronger than traditional data processing applications, and informational requirementswhich are weaker.In order for an operating system to support both traditional and multimedia applications, a wider range of facilitiesthan is found in current operating systems needs to be provided. This paper describes an operating system, calledNemesis, whose goal is to provide this range of facilities. This work was carried out as part of the Pegasus project [1],an ESPRIT Basic Research Activity.The underlying assumptions made in the Pegasus project are:1. General purpose computing platforms will process continuous media as well as simply capture, render and storethem.2. Users will run many applications which manipulate continuous media simultaneously.3. An application manipulating continuous media will make varying demands on resources during its execution.4. The application mix and load will be dynamic.In multimedia systems which capture, display, and store continuous media the range of applications is constrained(although by no means currently exhausted). The introduction of the processing of continuous media in real time addsan important new dimension. If the current situation is typi�ed as using processors to control continuous media, futuresystems will be typi�ed as systems in which the data types operated on have been extended to include continuous mediastreams [2]. What we are concerned with here is to provide an environment in which such applications can be developedand run.Traditional general purpose operating systems support the notion of a virtual processor interface in which eachapplication sees its own virtual processor { this provides a method for sharing the real processor. However, each virtualIan Leslie, Richard Black, Paul Barham and Robin Fairbairns are with the University of Cambridge Computer Laboratory, Cambridge UK.Derek McAuley is with the Department of Computer Science, University of Glasgow, UK.Timothy Roscoe is with Persimmon IT Inc, Durham, NC.David Evers is with Nemesys Research Limited, Cambridge UK.Eoin Hyden is with AT&T Bell Labs, NJ.

www.manaraa.com

2processor sees a performance which is inuenced by the load on the other virtual processors, and mechanisms to controlthis interference are generally not available. Multimedia applications require such mechanisms.One way of controlling this interference is by providing multiple real processors. For example, many multimediaapplications (or parts thereof), run on processors on peripheral cards so that the main processor is not involved.Moreover, the code running on the peripheral is likely to be embedded and there is no danger of competing applicationsusing the peripheral at the same time. The same approach is also used in mainframes where the use of channelprocessors reduces the I/O demands on the central processors, in particular ensuring that the central processors do notget overloaded by I/O interrupts.Our aim in Nemesis is to allow a general purpose processor to be used to provide the functions one would �nd in aspecialised DSP peripheral while providing the same control of interference across virtual processors as can be achievedwith distinct hardware. We wish to retain the exibility of the virtual processor system so that resources can be usedmore e�ciently than in a dedicated-peripheral approach.In approaching the design of an operating system with these goals, the immediate question of revolution versusevolution arises. Should one attempt to migrate a current operating system (or indeed use a current operating system)in order to meet these goals, or should one start afresh? The reasons why current general purpose operating systems arenot appropriate are well established. Similarly, hard real time solutions which require static analysis are not appropriatein a situation where the application mix is dynamic.General purpose operating systems with \real time threads" in which the real time behaviour is provided by staticpriority are also inappropriate, unless one is running a single multimedia application or can a�ord to perform an analysisof the complete system in order to assign priorities. A better solution might be to take an existing operating system andmodify its scheduling system to support multimedia applications { perhaps one reason for the di�culty in performingsuch a scheduler transplant is that knowledge of the characteristics of the scheduler often migrates to other componentsmaking the e�ect of replacement unpredictable.This, together with our view that processor scheduling is not the only important aspect of operating system supportfor multimedia applications has lead us to start from scratch. As we describe below, providing a realisation of a virtualprocessor that has the properties that we require has profound implications on the complete structure of the operatingsystem.The main theme guiding the design of Nemesis is multiplexing system resources at the lowest level { in the case ofthe processor, this multiplexing system is the scheduling algorithm. However, it is the multiplexing of all resources, realor virtual, which has determined the fundamental structure of Nemesis.This has given rise to a system in which as much functionality as possible executes in the domain of the application1.This includes code that in a traditional microkernel would execute in a shared server. It should be emphasised that thisneed not change the interface seen by application programmers. The API seen by a programmer is often a thin layerof library code supplying a veneer over a set of kernel traps and messages to server processes { whereas in Nemesis themajority of the functionality would be provided by a shared library. As an example, a POSIX API in a Nemesis domaincan be provided over a POSIX emulation which mostly runs within the applications domain.In Nemesis a service is provided as far as possible by shared library code and the design of a service will aim tominimise the number of changes in protection domain. To aid in the construction of such services, references betweenthe various parts of the code and data are simpli�ed by the use of a single address space with protection between domainsprovided by the access control �elds of address translations.After a discussion of quality of service management and application crosstalk in section II, the structure of the Nemesiskernel, the virtual processor model and the event mechanism, is described in detail in section III. Events are a nativeconcept in Nemesis. Events can be used to support an implementation of event counts and sequencers, and in practiceall domains currently use this mapping. Other synchronisation primitives can be built on top of event counts andsequencers when required.Scheduling amongst and within domains is described in section IV. Two domain scheduling algorithms are presented,one in detail, one briey. Although scheduling is an important aspect of supporting multimedia applications, Nemesisdoes not take the view that there is a correct scheduling algorithm; indeed the structure of Nemesis is designed to makethe use of alternative scheduling algorithms straightforward.Two aspects of the system are only briey described: the linkage model for the single address space and the interdomaincommunication mechanisms. A system in which code implementing operating system services executes within theapplication domain gives rise to problems of linking the pieces of code and data required and of providing safe ande�cient sharing of this code and data. These problems, as well as those directly attributable to the use of a singleaddress space, are discussed in section V.Higher layer inter-domain communication (IDC) systems can be built over events. Section VI presents the systemused for interdomain invocations based on an RPC model. This section also presents the bulk transfer mechanism usedin Nemesis, in the context of support for networking I/O.1The concept of domains in Nemesis will be explained in section III, for the moment they can be thought of as analogous to Unix processes.

www.manaraa.com

3The current state of the implementation and systems built over it are described along with some early conclusions insection VII. II. The Model of Quality of Service (QoS) ManagementManaging quality of service (QoS) in an operating system can be done in a number of ways. At one extreme one canmake hard real time guarantees to the applications, refusing to run them if the hard real time guarantees cannot bemade. At the other extreme one can hope for the best by providing more resource than one expects to be used.In between are a range of options which are more appropriate for multimedia systems. In general the approach isto provide probabilistic guarantees and to expect applications to monitor their performance and adapt their behaviourwhen resource allocation changes.Some QoS architectures, for example [3] assume a context in which applications specify their QoS requirementsto a layer below them which then determines how that requirement is to be met and in turn speci�es derived QoSrequirements to the next layer below. This is a particularly bad approach when the layers are performing multiplexing(e.g. a single thread operating on behalf of a number of applications) since great care must be taken to prevent QoScrosstalk. Even when the processing is not multiplexed we cannot escape the need to have a recursive mapping ofQoS requirements down the service stack. This is not a practical approach; providing this mapping is problematic,particularly when the application itself is unlikely to understand its QoS requirements, and when they change in time.A. Feedback for QoS ControlOur approach is to introduce a notion of feedback control. This is an adaptive approach, in which a controller adjustsapplication QoS demands in the light of the observed performance. This should be distinguished from the more usualtype of feedback where applications degrade gracefully when resources are over committed. This is shown schematicallyin �gure 1.
Application
Adaptation

Instruction
 Stream

Resource
Provision

Application
Performance

Application
Execution

QoS
Manager

QoS
Controller

Desired
Performance

Fig. 1QoS Feedback ControlThe QoS Controller dictates the policy to be followed and can be directly dictated by the user, by an agent runningon the user's behalf, or more normally both. The QoS Manager implements the allocation of resources to try andachieve the policies dictated by the QoS Controller, ensures their enforcement by informing the operating system andapplications so they can adapt their behaviour.This scheme is directly analogous to many window systems, where the Window Manager and Server are the counter-parts of the QoS Controller and Manager. In a window system, applications are made aware of the pixels they have beenallocated by the server and adapt accordingly; the server enforces these allocations by clipping; and users, by using apreference pro�le and resizing windows directly, interact with the window manager (their agent) to express their desiredpolicies.This approach allows applications (and application writers) to be free from the problem of determining exactly whatresources an application requires at the cost of requiring them to implement adaptive algorithms. However a useful sidee�ect is that it thus simpli�es the porting of applications to new platforms.Where does this lead in relation to providing QoS guarantees within the operating system? Can everything be left tothe controller, manager and applications? A brief consideration of the feedback system leads to a conclusion: the forwardperformance function, that is, the application performance for a given set of resources and instruction stream, need notnecessarily be predictable to obtain the desired performance but it must be consistent . Note that while e�ciency andspeed of execution are desirable, they are not as important to the stability of the QoS control system as consistency.Consistency in turn requires that resources are accounted correctly to the applications that consume them, or to bemore accurate, to the applications that cause them to be consumed, and that QoS crosstalk between applications bekept to a minimum.

www.manaraa.com

4B. QoS CrosstalkWhen dealing with time-related data streams in network protocol stacks, the problem of Quality of Service crosstalkbetween streams has been identi�ed. QoS crosstalk occurs because of contention for resources between di�erent streamsmultiplexed onto a single lower-level channel. If the thread processing the channel has no notion of the componentstreams, it cannot apply resource guarantees to them and statistical delays are introduced into the packets of eachstream. To preserve the QoS allocated to a stream, scheduling decisions must be made at each multiplexing point.When QoS crosstalk occurs the performance of a given network association at the application level is unduly a�ectedby the tra�c pattern of other associations with which it is multiplexed. The solution advocated in [4],[5] is to multiplexnetwork associations at a single layer in the protocol stack immediately adjacent to the network point of attachment. Thisallows scheduling decisions to apply to single associations rather than to multiplexed aggregates. While this particularline of work grew out of the use of virtual circuits in ATM networks, it can also be employed in IP networks by the useof packet �lters [6],[7] and fair queueing schemes [8].Analogously, application QoS Crosstalk occurs when operating system services and physical resources are multiplexedamong client applications. In addition to network protocol processing, components such as device I/O, �ling systemsand directory services, memory management, link-loaders, and window systems are needed by client applications. Theseservices must provide concurrency and access control to manage system state, and so are generally implemented in serverprocesses or within the kernel.This means that the performance of a client is dependent not only on how it is scheduled but also on the performanceof any servers it requires, including the kernel. The performance of these servers is in turn dependent on the demandfor their services by other clients. Thus one client's activity can delay invocations of a service by another. This is atodds with the resource allocation policy, which should be attempting to allocate resources among applications ratherthan servers. We can look upon scheduling as the act of allocating the real resource of the processor. Servers introducevirtual resources which must also be allocated in a manner consistent with application quality of service.C. Requirements on the Operating SystemTaking this model of QoS management, including its extension to cover all resources, gives rise to the followingrequirements:� The operating system should provide facilities to allow the dynamic allocation of resources to applications.� The operating system should ensure that the consumption of resources is accounted to the correct application.� The operating system should not force applications to use shared servers where applications will experience crosstalkfrom other applications.The �rst of these requirements can be met by what we have called the QoS manager. This runs occasionally asrequests to change the allocation of resources are made. It does not run for any other reason and, to borrow a phrasefrom communications, can be said to run out of band with respect to the application computation.The second and third of these requirements are strongly related. Both are concerned with in band applicationcomputation and, again to use the language of communication systems, lead to a philosophy of a low level multiplexingof all resources within the system. This consideration gives rise to a novel structure for operating systems.III. Structural OverviewNemesis is structured to provide �ne-grained resource control and to minimise application QoS crosstalk. To meetthese goals it is important to account for as much of the time used by an application as possible, to keep the applicationinformed of its resource use, and enable the application to schedule its own subtasks. At odds with this desire is theneed for code which implements concurrency and access control over shared state to execute in a di�erent protectiondomain from the client (either the kernel or a server process).A number of approaches have been taken to try and minimize the cost of interacting with such servers. One techniqueis to support thread migration; there are systems which allow threads to undergo protection domain switches, bothin specialised hardware architectures [9] and conventional workstations [10]. However, such threads cannot easily bescheduled by their parent application, and must be implemented by a kernel which manages the protection domainboundaries. This kernel must as a consequence, provide synchronisation mechanisms for its threads, and applicationsare no longer in control of their own resource tradeo�s.The alternative is to implement servers as separate schedulable entities. Some systems allow a client to transfersome of their resources to the server to preserve a given QoS across server calls. The Processor Capacity Reservesmechanism [11] is the most prominent of these; the kernel implements objects called reserves which can be transferredfrom client threads to servers. This mechanism can be implemented with a reasonable degree of e�ciency, but does notfully address the problem:� The state associated with a reserve must be transferred to a server thread when an IPC call is made. This adds tocall overhead, and furthermore su�ers from the kernel thread-related problems described above.� Crosstalk will still occur within servers, and there is no guarantee that a server will deal with clients fairly, or thatclients will correctly `pay' for their service.

www.manaraa.com

5� It is not clear how nested server calls are handled; in particular, the server may be able to transfer the reserve toan unrelated thread.Nemesis takes the approach of minimising the use of shared servers so as to reduce the impact of application QoScrosstalk: the minimum necessary functionality for a service is placed in a shared server while as much processing aspossible is performed within the application domain. Ideally, the server should only perform privileged operations, inparticular access control and concurrency control.A consequence of this approach is the desire to expose some server internal state in a controlled manner to clientdomains. Section V describes how the particular use of interfaces and modules in Nemesis supports a model where alltext and data occupies a single virtual address space facilitating this controlled sharing. It must be emphasised thatthis in no way implies a lack of memory protection between domains. The virtual to physical address translations inNemesis are the same for all domains, while the protection rights on a given page may vary. What it does mean isthat any area of memory in Nemesis can be shared, and virtual addresses of physical memory locations do not changebetween domains.
Unprivileged:

Privileged:

Kernel

Applic-
ation

Device
Driver

Applic-
ation

Applic-
ation

Fig. 2Nemesis system architectureThe minimal use of shared servers stands in contrast to recent trends in operating systems, which have been to movefunctionality away from client domains (and indeed the kernel) into separate processes. However, there are a numberof examples in recent literature of services being implemented as client libraries instead of within a kernel or server.E�cient user-level threads packages have already been mentioned. Other examples of user level libraries include networkprotocols [12], window system rendering [13] and Unix emulation [14].Nemesis is designed to use these techniques. In addition, most of the support for creating and linking new domains,setting up inter-domain communication, and networking is performed in the context of the application. The result is a`vertically integrated' operating system architecture, illustrated in �gure 2. The system is organised as a set of domains ,which are scheduled by a very small kernel.A. The Virtual Processor InterfaceThe runtime interface between a domain and the kernel serves two purposes:� It provides the application with information about when and why it is being scheduled.� It supports user-level multiplexing of the CPU among distinct subtasks within the domain.The key concepts are activations by which the scheduler invokes the domain, and events which indicate when and whythe domain has been invoked. If each domain is considered a virtual processor, the activations are the virtual interrupts,the events the virtual interrupt status.An important data structure associated with the virtual processor interface is the Domain Control Block (DCB). Thiscontains scheduling information, communication end-points, a protection domain identi�er, an upcall entry point forthe domain, and a small initial stack. The DCB is divided into two areas: one is writable by the domain itself, the otheris readable but not writable. A privileged service called the Domain Manager creates DCBs and links them into thescheduler data structures. The details of some of the �elds in the DCB are described below.

www.manaraa.com

6A.1 ActivationsThe concept of activations is similar to that presented in [15]. When a domain is allocated the CPU by the kernel,the domain is normally upcalled rather than being resumed at the point where it lost the CPU. This allows the domainto consider scheduling actions as soon as it obtains CPU resource. The exceptional case of a resumption is only usedwhen the domain is operating within a critical section where an activation would be di�cult to cope with, entailingre-entrant handlers. The domain controls whether it is activated or resumed by setting or clearing the activation bit inthe DCB. This can be considered as disabling the virtual interrupts.A Nemesis domain is provided with an array of slots in the DCB, each of which can hold a processor context. Forexample, in the case of the Alpha/AXP implementation, there are 32 slots, each consisting of 31 integer and 31 oating-point registers, plus a program counter and processor status word. At any time, two of the slots are designated by theapplication as the activation context and resume context .When a domain is descheduled, its processor context is saved into the activation slot or the resume slot, dependingon whether the activation bit is set or not. When the domain is once again scheduled, if its activation bit is clear, theresume context is used; if the activation bit is set, the bit is cleared and an upcall takes place to a routine speci�ed inthe DCB. This entry point will typically be a user-level thread scheduler, but domains are also initially entered this way.Figure 3 illustrates the two cases.
deschedule activation

temporary
activation
context

activation bit=1 activation bit=0

Context
Slots

Activation
Slot

Resume
Slot

deschedule activation
activation bit=0activation bit=0

Context
Slots

Activation
Slot

Resume
Slot

Fig. 3Deschedules, Activations and ResumptionsThe upcall occurs on a dedicated stack (again in the DCB) and delivers information such as current system time, timeof last deschedule, reason for upcall (e.g. event noti�cation) and context slot used at last deschedule. Enough informationis provided to give the domain a su�cient execution environment to schedule a thread. A threads package will typicallyuse one context slot for each thread and change the designated activation context according to which thread is running.If more threads than slots are required, slots can be used as a cache for thread contexts. The activation bit can be usedwith appropriate exit checks to allow the thread scheduler to be non-reentrant, and therefore simpler.A.2 EventsIn an operating system one of the requirements is to provide a mechanism for the various devices and components tocommunicate. The Nemesis kernel provides events and event channels to provide the underlying noti�cation mechanismon which a range of communications channels can be constructed. There were a number of important considerations forthe event mechanism in Nemesis.� The mechanism must not force synchronous behaviour on domains which would �nd an asynchronous mechanismmore convenient.� It must be possible to communicate in a non-blocking manner (for example, for device drivers or servers which areQoS conscious).� In loosely coupled multiprocessors, any explicit memory synchronisation required by the communication shouldonly have to be performed when the mechansism is invoked. This requirement is to enable portable use of partiallyordered memory systems such as an Alpha AXP multiprocessor, or the Desk Area Network.� A thread scheduler within a domain can map communications activities to scheduling requirements e�ciently; thisnecessitates that the communications primitives be designed in conjunction with the concurrency primitives.

www.manaraa.com

7These requirements dictate a solution which is asynchronous and non-blocking, and which can indicate that anarbitrary number of communications have occurred to the receiver.The scheme is based on events the value of which can be conveyed from a sending domain via the kernel to a recipientdomain via an event channel. An event is a monotonically increasing integer which may be read and modi�ed atomicallyby the sending domain. This domain can request the current value be conveyed to the recipient domain by performingthe kernel system call, send(). The recipient domain holds a readonly copy of the event which is updated by the kernelas a result of a send().
sys_send_event(n)

n

n

m

User

Kernel

Process A Process B

process
event table

pending event
circular buffer

fifo

kernel
event dispatch

table for process A

process
event table value of event n

updated value

m

process index

B m

Fig. 4Example of sending an event updateAs an example, �gure 4 shows the value of event number n in domain A being propagated (by the send system call)to domain B where it is event number m. The mapping table for event channels from A has the pair (B,m) for entryn so the kernel copies the value from A's event table to the appropriate entry in B's event table and places B's index(in this case m) into B's circular bu�er �fo.For each domain, the kernel has a protected table of the destinations of the event channels originating at that domain.A management domain called the Binder, described in section VI-A, is responsible for initialising these tables andthereby creating communication channels. Currently only \point-to-point" events are implemented, although there isnothing to prevent \multicast" events if needed in the future.Exactly what an event represents is not known by the kernel, but only by the domains themselves. The relationshipbetween these Nemesis events and event counts and sequencers [16] within the standard user thread library is discussedin section IV-D. Events are also used as the underlying noti�cation mechanism supporting interrupt dispatch andinter-domain communication facilities at a higher level of abstraction { currently support is provided for inter-domaininvocations (section VI), and streaming data operations (section VI-C).A.3 TimeIn a multimedia environment there is a particular need for a domain to know the current time, since it may need toschedule many of its activities related to time in the real world.In many systems (e.g. unix), the current time of day clock is derived from a periodic system ticker. CPU schedulingis done based on this ticker, and the system time is updated when this ticker interrupt occurs taking into account anadjustment to keep the time consistent with universal time (UT) (e.g. using NTP [17]). In these circumstances, a

www.manaraa.com

8domain may only be able to obtain a time value accurate to the time of the last timer interrupt and even then the valueactually read may be subject to signi�cant skew due to adjustments.To overcome these problems in Nemesis, scheduling time and UT are kept separate. The former is kept as a number ofnanoseconds since the system booted and is used for all scheduling and resource calculations and requests. The expectedgranularity of updates to this variable can be read by applications if required. Conversion between this number andUCT can be done by adding a system base value. It is this base value which can be adjusted to take account of thedrift between the system and mankind's clock of convention. The scheduling time is available in memory readable byall domains, as well as being passed to a domain on activation.B. Kernel StructureThe Nemesis kernel consists almost entirely of interrupt and trap handlers; there are no kernel threads. When thekernel is entered from a domain due to a system call, a new kernel stack frame is constructed in a �xed (per processor)area of memory; likewise when �elding an interrupt.Kernel traps are provided to send() events, yield() the processor (with and without timeout) and a set of threevariations of a \return from activation" system call, rfa(). The return from activation system calls perform variousforms of atomic context switches for the user level schedulers. Privileged domains can also register interrupt handlers,mask interrupts and if necessary (on some processors) ask to be placed in a particular processor privileged modes (e.g. toaccess TLB etc).On the Alpha AXP implementation, the above calls are all implemented as PAL calls with only the scheduler writtenin C (for reasons of comprehension).Nemesis aims to schedule domains with a clear allocation of CPU time according to QoS speci�cations. In mostexisting operating systems, the arrival of an interrupt usually causes a task to be scheduled immediately to handle theinterrupt, preempting whatever is running. The scheduler itself is usually not involved in this decision; the new taskruns as an interrupt service routine.The interrupt service routine (ISR) for a high interrupt rate device can therefore hog the processor for long periods,since the scheduler itself hardly gets a chance to run, let alone a user process. Such high frequency interruptions can becounter productive; [18] describes a situation where careful prioritising of interrupts led to high throughput, but withmost interrupts disabled for a high proportion of the time.Sensible design of hardware interfaces can alleviate this problem, but devices designed with this behaviour in mindare still rare, and moreover they do not address the fundamental problem: scheduling decisions are being made by theinterrupting device and interrupt dispatching code, and not by the system scheduler, e�ectively bypassing the policingmechanism.The solution adopted in Nemesis decouples the interrupt itself from the domain which is handling the interrupt source.Device drivers are implemented as privileged domains { they can register an interrupt handler with the system, which iscalled by the interrupt dispatch code with a minimum of registers saved. This ISR typically clears the condition, masksthe source of the interrupt, and sends an event to the domain responsible. This sequence is su�ciently short that it canbe ignored from an accounting point of view. For example, the ISR for the LANCE Ethernet driver on the Sandpiperis 12 instructions long.Sometimes the recipient domain will actually be a speci�c application domain (e.g. an application which has exclusiveaccess to a device). However, where the recipient domain of the event is a device driver domain providing a (de-)multiplexing function (e.g. demultiplexing Ethernet frame types), this domain is under the control of the QoS basedscheduler like any other and can (and does) have resource limits attached.A signi�cant bene�t of the single virtual address space approach for ISRs is that virtual addresses are valid regardlessof which domain is currently scheduled. The maintenance of scatter-gather maps to enable devices to DMA data directlyto and from virtual memory addresses in client domains is thus greatly simpli�ed.IV. SchedulingA Nemesis scheduler has several goals: to reduce the QoS crosstalk between applications; to enable application-speci�cdegradation under load; to support applications which need some baseline resource by providing some real guaranteeson CPU allocation.A key concept is that applications should be allocated a share of the processor. These shares are allocated by the QoSManager, based on an understanding of the available resources and input from the QoS Controller (and hence from bothapplications and the user). A key decision was made in order to simplify the computation required by the scheduler oncontext switches | the QoS Manager will ensure that the scheduler can always meet its short term demands by ensuringthat less than 100% of the processor is \contracted out" to domains requiring QoS.The QoS Manager takes a long term view of the availability of resources and uses algorithms with signi�cant hysteresisto provide a consistent guaranteed resource to the application. However, this does not imply that the system is notwork-conserving { any \slack" time in the system is supplied to those applications that request it with the informationthat this is \optimistic" processor capacity and they should not adapt their behaviour to rely upon it.

www.manaraa.com

9A mechanism for specifying CPU time QoS must serve three purposes: it must allow applications, users, or useragents to specify an application's desired CPU time, enable the QoS Manager to ensure the processor resource is notover allocated and enable the scheduler to allocate processor time e�ciently.As decribed in section II, Nemesis adopts an approach in which users or user agents are expected to provide overallcontrol (by observation) of resouce allocation. This leads to a simple QoS speci�cation. In the case of CPU time, thereis further advantage in a simple QoS speci�cation: it reduces the overhead for the scheduler in recalculating a scheduleduring a context switch.A. Scheduling Architecture and Service ModelAs well as the (relatively simple) code to switch between running domains, the Nemesis scheduler has a variety offunctions. It must:� account for the time used by each holder of a QoS guarantee and provide a policing mechanism to ensure domainsdo not overrun their allotted time,� implement a scheduling algorithm to ensure that each contract is satis�ed,� block and unblock domains in response to their requests and the arrival of events,� present an interface to domains which makes them aware both of their own scheduling and of the passage of realtime,� provide a mechanism supporting the e�cient implementation of potentially specialised threads packages withindomains.Applications in Nemesis specify neither priorities nor deadlines. The scheduler deals with entities called schedulingdomains , or sdoms , to which it aims to provide a particular share of the processor over some short time frame. Ansdom may correspond to a single Nemesis domain or a set of domains collectively allocated a share.

Best-effort
Domain b

Best-effort
Domain c

Contracted
Domain A

Contracted
Domain B

Contracted
Domain C

Best-effort
Class 1

Best-effort
Domain a

Best-effort
Class 2Sdoms:

Scheduler:

Best-effort
Domains: Fig. 5Scheduling service architectureThe service architecture is illustrated in �gure 5. Sdoms usually correspond to contracted domains, but also correspondto best-e�ort classes of domains. In the latter case, processor time allotted to the sdom is shared out among its domainsaccording to one of several algorithms, such as simple round-robin or multi-level feedback queues. The advantage of thisapproach is that a portion of the total CPU time can be reserved for domains with no special timing requirements toensure that they are not starved of processor time. Also, several di�erent algorithms for scheduling best-e�ort domainscan be run in parallel without impacting the performance of time-critical activities.It has already been mentioned that within Nemesis scheduling using shares is a core concept; however, the particularscheduling algorithm is open to choice. The Atropos scheduler, now the \standard" Nemesis scheduler is described indetail below.B. The Atropos SchedulerWith the Atropos scheduler shares are speci�ed using an application dependent period. The share of the processoreach sdom receives is speci�ed by a tuple fs; p; x; lg. The slice s and period p together represent the processor bandwidthto the sdom: it will receive at least s ticks of CPU time (perhaps as several time slices) in each period of length p. xis a boolean value used to indicate whether the sdom is prepared to receive \slack" CPU time. l, the latency hint , isdescribed below.The Atropos scheduler internally uses an Earliest Deadline First (EDF) algorithm to provide this share guarantee.However the deadlines on which it operates are not available to or speci�ed by the application { for the implementation

www.manaraa.com

10of the scheduler to be simple and fast it relies on the fact that the QoS Manager has presented it with a soluble problem{ this could not be ensured if the applications were allowed to specify their own deadlines.An sdom can be in one of �ve states and may be on a scheduler queue:Queue Staterunning running in guaranteed timeQr; dr runnable guaranteed time availableQw; dw waiting awaiting a new allocation of timeoptimistic an sdom running in slack timeQb blocked awaiting an eventFor each sdom, the scheduler holds a deadline d, which is the time at which the sdom's current period ends, and avalue r which is the time remaining to the sdom within its current period. There are queues Qr and Qw of runnableand waiting sdoms, both sorted by deadline (with dx and px the deadlines and periods of the respective queue heads),and a third queue Qb of blocked sdoms.The scheduler requires a hardware timer that will cause the scheduler to be entered at or very shortly after a speci�edtime in the future, ideally with a microsecond resolution or better2. When the scheduler is entered at time t as a resultof a timer interrupt or an event delivery:1. the time for which the current sdom has been running is deducted from its value of r.2. if r is now zero, the sdom is inserted in Qw.3. for each sdom on Qw for which t � d, r is set to s, its new deadline is set to d+ p, and it is moved to Qr.4. a time is calculated for the next timer interrupt depending on which of dr or dw + pw is the lower.5. the scheduler runs the head of Qr, or if empty selects an element of Qw.This basic algorithm will �nd a feasible schedule. This is seen by regarding a `task' as `the execution of an sdomfor s nanoseconds' { as the QoS Manager has ensured that the total share of the processor allocated is less than 100%(i.e. P si=pi < 1), and slices can be executed at any point during their period { this approach satis�es the conditionsrequired for an EDF algorithm to function correctly [19],This argument relies on two simpli�cations: �rstly, that scheduling overhead is negligible, and secondly that thesystem is in a steady state. The �rst is addressed by ensuring there is su�cient slack time in the system to allow thescheduler to run and by not counting time in the scheduler as used by anybody. The second is concerned with movingan sdom with a share allocation from Qb to Qr. A safe option is to set d := t+ p and r := s; this introduces the sdomwith the maximum scheduling leeway and since a feasible schedule exists no deadlines will be missed as a result. Formost domains this is su�cient, and it is the default behaviour.In the limit, all sdoms can proceed simultaneously with an instantaneous share of the processor which is constant overtime. This limit is often referred to as processor sharing . Moreover, it can e�ciently support domains requiring a widerange of scheduling granularities.B.1 Interrupts and Latency hintIn fact, when unblocking an sdom which as been asleep for more than its period, the scheduler sets r := s andd := t + l, where l is the latency hint. The default behaviour just described is then achieved by setting l := p for mostdomains. However, in the case of device drivers reacting to an interrupt, faster response is sometimes required. If thedevice domain is using less than its share or processor capacity, the unblocking latency hint l provides a means for adevice driver domain to respond to an interrupt with low latency.The consequences of reducing l in this way are that if such an sdom is woken up when the complete system isunder heavy load, some sdoms may miss their deadline for one of their periods. The scheduler's behaviour in thesecircumstances is to truncate the running time of the sdoms: they lose part of their slice for that period. Thereafter,things settle down.At a high interrupt rate from a given device, at most one processor interrupt is taken per activation of the driverdomain, so that the scheduling mechanism is enforcing a maximum interrupt and context switch rate. Hence, as theactivity in the device approaches the maximum that the driver domain has time to process with its CPU allocation, thedriver rarely has time to block before the next action in the device that would cause an interrupt, and so converges toa situation where the driver polls the device whenever it has the CPU.When device activity is more than the driver can process, overrun occurs. Device activity which would normally causeinterrupts is ignored by the system since the driver cannot keep up with the device. This is deemed to be more desirablethan having the device schedule the processor: if the driver has all the CPU cycles, the `clients' of the device wouldn'tbe able to do anything with the data anyway. If they could, then the driver is not being given enough processor time2Such a timer is available on the DECchip EB64 board used to prototype Nemesis, but has to be simulated with a 122�s periodic ticker onthe Sandpiper workstations.

www.manaraa.com

11by the domain manager. The system can detect such a condition over a longer period of time and reallocate processorbandwidth in the system to adapt to conditions.B.2 Use of Slack TimeAs long as Qr is non-empty, the sdom at the head is due some contracted time and should be run. If Qr becomesempty, the scheduler has ful�lled all its commitments to sdoms until the head of Qw becomes runnable. In this case,the scheduler can opt to run some sdom in Qw for which x is true, i.e. one which has requested use of slack time in thesystem. Domains are made aware of whether they are running in this manner or in contracted time by a ag in theirDCB.The current policy adopted by the scheduler is to run a random element of Qw for a small, �xed interval or untilthe head of Qw becomes runnable, whichever is sooner. Thus several sdoms can receive the processor \optimistically"before Qr becomes non-empty. The best policy for picking sdoms to run optimistically is a subject for further research.The current implementation allocates a very small time quantum (122 �s) to a member of Qw picked cyclically. Thisworks well in most cases, but there have been situations in which unfair `beats' have been observed.C. Other SchedulersThe Nemesis system does not prescribe a scheduler per se; the Atropos scheduler is simply the one in common use.Other schedulers can be used where appropriate.A alternative scheduler, known as the Jubilee scheduler, has been developed. It di�ers from the Atropos scheduler inthat CPU resources are allocated to applications using a single system de�ned frequency. The period of this system widefrequency is known as a Jubilee and will typically be a few tens of milliseconds. The Jubilee scheduler has schedulinglevels in a strict priority order, one for guaranteed CPU, the others for successively more speculative computations. LikeAtropos, it has a mechanism for handing out slack time in the system. The use of priority is internal to the schedulerand not visible to client domains.The �xed Jubilees remove the need for EDF scheduling and is particular suited to situations where the applicationload is well understood and where the a single Jubilee size can be chosen. Complete details can be found in [20].D. Intra-domain schedulingThis section considers the implementation of an intra-domain scheduler to provide a familiar threaded environment.The intra-domain scheduler is the code which sits above the virtual processor interface. The code is not privileged andcan di�er from domain to domain. It may be very simple (in the case of a single threaded domain), or more complex.The base technique for synchronization that was adopted within domains was to extend the use of the core Nemesisevents already present for interdomain communication, and provide event counts and sequencers [16]. These eventcounts and sequencers can be purely local within the domain or attached to either outbound events (those which can bepropagated to another domain using send()) or inbound events (those which change asynchronously as a result of someother domain issuing a send()).D.1 Event counts and sequencersThere are three operations available on an event count e and two on a sequencer s. These are:read(e) This returns the current value of the event count e. More strictly this returns some value of the eventcount between the start of this operation and its termination.await(e,v) This operation blocks the calling thread until the event count e reaches or exceeds the value v.advance(e,n) This operation increments the value of event count e by the amount n. This may cause other threadsto become runnable.read(s) This returns the current value of the sequencer s. More strictly this returns some value of the sequencerbetween the start of this operation and its termination.ticket(s) This returns the current member of a monotonically increasing sequence and guarantees that anysubsequent calls to either ticket or read will return a higher value.In fact there is little di�erence between the underlying semantics of sequencers and event counts; the di�erence isthat the ticket operation does not need to consider awaking threads, whereas the advance operation does (therefore itis wrong for a thread to await on a sequencer). The initial value for sequencers and event counts is zero; this may bealtered immediately after creation using the above primitives. An additional operation await until(e,v,t) is supported,which waits until event e has value v or until time has value t.By convention an advance on an outbound event will cause the new value to be propagated by issuing the send()system call. Only read and await should be used on incoming events as their value may be overwritten at any time.In this way, both local and interdomain synchronization can be achieved using the same interface and, unless required,a user level thread need not concern itself with the di�erence.

www.manaraa.com

12D.2 Concurrency primitives using eventsIn contrast to many other systems where implementing one style of concurrency primitives over another set can beexpensive it is very e�cient to implement many schemes over event counts.The mutexes and conditional variables of SRC threads [21], POSIX threads, and the semaphores used in the Wandasystem have all been implemented straightforwardly and e�ciently over event counts. Details can be found in [20].Implementing threads packages over the upcall interface has proved remarkably easy. A Nemesis module implement-ing both preemptive and non-preemptive threads packages, providing both an interface to the event mechanism andsynchronisation based on event counts and sequencers comes to about 2000 lines of heavily commented C and about 20assembler opcodes. For comparison, the POSIX threads library for OSF/1 achieves essentially the same functionalityover OSF/1 kernel threads with over 6000 lines of code, with considerably inferior performance.V. Interfaces and InvocationThe architecture introduced in section III raises a number of questions concerning the structure of applications, howservices traditionally provided by servers or a kernel are provided, and how applications process their own exceptions.In order to describe the inter-domain communciation system of Nemesis it is necessary to present some of the higherlevel constructs used in Nemesis to complement the single virtual address space approach. A full account can be foundin [22]. The key aspects are the extensive use of typing, transparency and modularity in the de�nition of the Nemesisinterfaces and the use of closures to provide comprehensible, safe and extensive sharing of data and code.Within the Nemesis programming model there are concepts of an interface reference, and an invocation reference, thelatter being obtained from the former by binding. An interface reference is an object containing the information used aspart of binding to build an invocation reference to a particular instance of an interface. The invocation reference will bea closure of the appropriate type and may be either a simple pointer to library code (and local state) or to a surrogatefor a remote interface. In the local case an interface reference and invocation reference have the same representation {a pointer to a closure { binding is an implicit and trivial operation.In Nemesis, as in Spring [14], all interfaces are strongly typed, and these types are de�ned in an interface de�nitionlanguage (IDL). The IDL used in Nemesis, called Middl, is similar in functionality to the IDLs used in object-basedRPC systems, with some additional constructs to handle local and low-level operating system interfaces. A Middlspeci�cation de�nes a single abstract data type by declaring its supertype, if any, and giving the signatures of all theoperations it supports. A speci�cation can also include declarations of exceptions, and concrete types.The word object in Nemesis denotes what lies behind an interface: an object consists of state and code to implementthe operations of the one or more interfaces it provides. A class is a set of objects which share the same underlyingimplementation, and the idea of object class is distinct from that of type, which is a property of interfaces rather thanobjects3When an operation is invoked upon an object across one of its interfaces, the environment in which the operation isperformed depends only on the internal state of the object and the arguments of the invocation. There are no globalsymbols in the programming model. Apart from the bene�ts of encapsulation this provides, it facilitates the sharing ofcode.In order to overcome the awkwardness that the lack of global symbols might produce (consider having to pass areference to a memory allocation heap on virtually every invocation), certain interfaces are treated as part of the threadcontext. These are known as pervasives . The programming model includes the notion of the currently excuting threadand the current pervasives are always available. These include exception handlers, thread operations, domain controloperations and the default memory allocation heap.The programming model is supported by a linkage model. A stub compiler is used to map Middl type de�nitionsto C language types. The compiler, known as middlc processes an interface speci�cation and generates a header �legiving C type declarations for the concrete types de�ned in the interface together with special types used to representinstances of the interface.An interface is represented in memory as a closure: a record of two pointers, one to an array of function pointers andone to a state record. To invoke an operation on an interface, the client calls through the appropriate element of theoperation table, passing as �rst argument the address of the closure itself.VI. Inter-Domain CommunicationNemesis provides a framework for building various Inter-Domain Communication (IDC) mechanisms and abstractionsusing events for noti�cation and shared memory for data transfer.One such model is inter-domain invocation; use is made of the Nemesis run-time type system to allow an arbitraryinterface to be made available for use by other domains. The basic paradigm adopted is then dictated by the Middl3This is di�erent from C++ where there is no distinction between class and type, and hence no clear notion of an interface. C++ abstractclasses often contain implementation details, and were added as an afterthought [23, p. 277].

www.manaraa.com

13interface de�nition language: Remote Procedure Call (RPC) with the addition of `announcement' operations, whichallow use of message passing semantics.The use of an RPC paradigm for invocations in no way implies the traditional RPC implementation techniques(marshalling into bu�er, transmission of bu�er, unmarshalling and dispatching, etc.). There are cases where the RPCprogramming model is appropriate, but the underlying implementation can be radically di�erent. In particular, withthe rich sharing of data and text a�orded by a single address space, a number of highly e�cient implementation optionsare available.Furthermore, there are situations where RPC is clearly not the ideal paradigm: for example, bulk data transfer orcontinuous media streams are often best handled using an out-of-band RPC interface only for control. This is thecase with the RBuf mechanism presented in section VI-C, which employs the binding model described here and aninterface-based control mechanism.Operating systems research to date has tended to focus on optimising the performance of the communication systemsused for RPCs, with relatively little attention given to the process of binding to interfaces. By contrast, the �eld ofdistributed processing has sophisticated and well-established notions of interfaces and binding, for example the \Trader"within the ANSA architecture [24]. The Nemesis binding model shares many features with the ANSA model.This section describes briey the Nemesis approach to inter-domain binding and invocation, including optimisationswhich make use of the single address space and the system's notion of real time to reduce synchronisation overhead andthe need for protection domain switches, followed by an outline of the support for stream based IDC.A. BindingIn order to invoke operations on a remote interface, to which a client has an interface reference, a client requires alocal interface encapsulating the implementation needed for the remote invocation. This is what we have previouslydescribed as an invocation reference. In Nemesis IDC, an invocation reference is a closure pointer of the same type asthe remote interface { in other words a surrogate for the remote interface.An interface reference typically arrives in a domain as a result of a previous invocation. Name servers or tradersprovide services by which clients can request a service by specifying its properties. An interface reference is matched tothe service request and then returned to the client.In the local case (described in section V), an interface reference is simply a pointer to the interface closure, and bindingis the trivial operation of reading the pointer. In the case where communication has to occur across protection domainboundaries (or across a network), the interface reference has to include rather more information and the binding processis correspondingly more complex.A.1 Implicit v. Explicit bindingAn implicit binding mechanism creates the state associated with a binding in a manner invisible to the client. Aninvocation which is declared to return an interface reference actually returns a closure for a valid surrogate for theinterface. Creation of the surrogate can be performed at any stage between the arrival of the interface reference inan application domain and an attempt by the application to invoke an operation on the interface reference. Indeed,bindings can time out and then be re-established on demand.The key feature of the implicit binding paradigm is that information about the binding itself is hidden from the client,who is presented with a surrogate interface indistinguishable from the `real thing'. This is the approach adopted bymany distributed object systems, for example Modula-3 Network Objects [25] and CORBA [26]. It is intuitive and easyto use from the point of view of a client programmer, and for many applications provides all the functionality required,provided that a garbage collector is available to destroy the binding when it is no longer in use.On the other hand, traditional RPC systems have tended to require clients to perform an explicit bind step due to thedi�culty of implementing generic implicit binding. The advent of object-based systems has recently made the implicitapproach prominent for the reasons mentioned above. However, implicit binding is inadequate in some circumstances,due to the hidden nature of the binding mechanism. It assumes a single, `best e�ort' level of service, and precludes anyexplicit control over the duration of the binding. Implicit binding can thus be ill-suited to the needs of time-sensitiveapplications.For this reason, within Nemesis bindings can also be established explicitly by the client when needed. If bindingis explicit, an operation which returns an interface reference does not create a surrogate as part of the unmarshallingprocess, but instead provides a local interface which can be later used to create a binding. This interface can allow theduration and qualities of the binding to be precisely controlled at bind time with no loss in type safety or e�ciency.The price of this level of control is extra application complexity which arises both from the need to parameterise thebinding and from the loss of transparency: acquiring an interface reference from a locally-implemented interface cannow be di�erent from acquiring one from a surrogate.

www.manaraa.com

14B. Remote InvocationThe invocation aspect of IDC (how invocations occur across a binding) is independent of the binding model used.Ideally, an IDC framework should be able to accommodate several di�erent methods of data transport within thecomputational model.RPC invocations have at least three aspects:1. The transfer of information from sender to receiver, whether client or server2. Signalling the transfer of information3. The transfer of control from the sender to the receiverCurrent operating systems which support RPC as a local communications mechanism tend to use one of two approachesto the problem of carrying a procedure invocation across domain boundaries: message passing and thread tunnelling.With care, a message passing system using shared memory regions mapped pairwise between communicating protectiondomains can provide high throughput, particularly by amortising the cost of context switches over several invocations{ in other words by having many RPC invocations from a domain outstanding. This separation of information transferfrom control transfer is especially bene�cial in a shared memory multiprocessor, as described in [27].The thread tunnelling model achieves very low latency by combining all components into one operation: the transferof the thread from client to server, using the kernel to simulate the protected procedure calls implemented in hardwareon, for example, Multics [28] and some capability systems such as the CAP [9]. An example is the replacement of theoriginal TAOS RPC mechanism by Lightweight RPC [10].In these cases, the performance advantage of thread tunnelling comes at a price; since the thread has left the clientdomain, it has the same e�ect as having blocked as far as the client is concerned. All threads must now be scheduled bythe kernel (since they cross protection domain boundaries), thus applications can no longer reliably internally multiplexthe CPU. Accounting information must be tied to kernel threads, leading to the crosstalk discussed in section III.B.1 Standard mechanismThe `baseline' IDC invocation transport mechanism in Nemesis operates very much like a conventional RPC mecha-nism. The bind process creates a pair of event channels between client and server. Each side allocates a shared memorybu�er and ensures that it is mapped read-only into the other domain. The server creates a thread which waits on theincoming event channel.An invocation copies the arguments (and the operation to be invoked) into the client's bu�er and sends an eventon its outgoing channel, before waiting on the incoming event channel. The server thread wakes up, unmarshals thearguments and calls the concrete interface. Results are marshalled back into the bu�er, or any exception raised by theserver is caught and marshalled. The server then sends an event on its outgoing channel, causing the client thread towake up. The client unmarshals the results and re-raises any exceptions.Stubs for this transport are entirely generated by the Middl compiler, and the system is used for cases whereperformance is not critical. Measurements have been taken of null RPC times between two domains an otherwiseunloaded DEC3000/400 Sandpiper. Most calls take about 30�s, which compares very favourably with those reported in[29] for Mach (88�s) and Opal (122�s) on the same hardware. Some calls (20% in the experiments) take between 55�sand 65�s; these have experienced more than one reschedule between event transmissions. Nemesis does not currentlyimplement full memory protection for its domains; the cost of a full protection domain switch consists of a singleinstruction to ush the 21064 data translation bu�er (DTB), followed by a few DTB misses. This cost of a DTB �ll onthe current hardware has been estimated at less than 1�s.C. RbufsThe inter-process communication mechanism described above �ts the needs of inter-domain invocation quite well, butis not appropriate for stream based bulk transfer of data. Besides Pipes and Streams, schemes for controlling suchtransfers are more often integrated with network bu�ering and include Mbufs [30], IOBufs [18], Fbufs [31] and otherschemes to support application data unit (ADU) transfer such as the IP trailers [32] scheme found in some versions ofBSD. A full discussion of these schemes can be found in [20].The scheme presented here, RBufs, is intended as the principal mechanism for both interdomain streams and forstreams between devices and application domains. The main design considerations are based on the requirements fornetworking and it is in that context it is presented; however, as is demonstrated with the �leserver example, it is alsointended for more general stream I/O use.The requirements for an I/O bu�ering system in Nemesis are slightly di�erent from all of the above systems. InNemesis, applications can negotiate for resources which possess availability guarantees. This means that an applicationcan have a certain amount of bu�er memory which will not be paged. If the system is short of memory then the QoSManager will require the application to free a certain amount. Hence, like the Fbuf system, there is no need for highlydynamic reallocation of bu�ers between di�erent I/O data paths. Also it would be preferable if multi-recipient dataneed not be copied.

www.manaraa.com

15C.1 Device Hardware ConsiderationsIt is useful to distinguish between network interfaces which are self-selecting and those which are not. Self-selectinginterfaces use the VCI (or similar) in the header of arriving data to access the correct bu�er control information. Theseare typically high bandwidth interfaces with DMA support. Non self-selecting interfaces require software copying ofdata (e.g. Ethernet).Examples of self-selecting interfaces include the Aurora TURBOchannel interface [33] and the Jetstream / After-burner combination [34]. In Jetstream the arriving packets enter a special bu�er memory based on the arriving VCI.The device driver then reads the headers and instructs a special DMA engine to copy the data to the �nal location.Knowledgeable applications may make special use of the bu�er pools in the special memory.It has been recent practice in operating systems to support a protocol independent scheme for determining the processfor which packets arriving at an interface are destined. This is known as packet �ltering [6] and this technology is nowhighly advanced [7],[35]. For non-self-selecting interfaces, packet �ltering can determine which I/O path the data willtravel along as easily as it can determine which process will be the receiver. This property is assumed in the Nemesisbu�er mechanism derived below.On older hardware many devices which used DMA required a single non-interrupted access to a contiguous bu�er.On more recent platforms such as the TURBOchannel [36] the bus architecture requires that a device burst for somemaximum period before relinquishing the bus. This is to prevent the cache and write bu�er being starved of memorybandwidth and halting the CPU. Devices are expected to have enough internal bu�ering to weather such gaps. Also,the high bandwidth that is available from DMA on typical workstations depends on accessing the DRAMs using pagemode. Such accesses mean that the DMA cycle must be re-initiated on crossing a DRAM page boundary. Furthermoremost workstations are designed for running Unix with its non-contiguous Mbuf chains. The result of this is that mosthigh performance DMA hardware is capable of (at least limited) scatter-gather capability.C.2 Protocol Software ConsiderationsMost commonly used protocols wish to operate on a data stream in three ways. These are:1. To add a header (e.g. Ethernet, IP, TCP, UDP, XTP)2. To add a trailer (e.g. XTP, AAL5)3. To break up a request into smaller sizes.HeadersHeaders are usually used to ensure that data gets to the right place, or to signify that it came from a particularplace. We can consider how such operations a�ect high performance stream I/O, particularly in respect of security.In the Internet much of the security which exists relies on secure port numbers. These are port numbers which areonly available to the highest authority on a given machine, and receivers may assume that any such packet bears thefull authority of the administrators of the source machine rather than an arbitrary user. It is similarly important thatmachines accurately report their own addresses. For this reason the transmission of arbitrary packets must be prohibited;transmission must include the correct headers as authorised by the system. This has been one reason for having suchnetworking protocols in the kernel or, in a micro-kernel, implemented in a single \networking daemon". However this isnot a foregone conclusion.It is possible instead to have protocol implementations within the user process, and still retain the required security.The device driver must then perform the security control. There is a broad spectrum of the possible ways of engineeringsuch a solution. In one extreme the device drivers actually include code (via a trusted library) which \understands" theprotocol and checks the headers; which is close to implementing the protocol itself in each device driver.Alternatively, the device driver could include an \inverse" packet �lter, code which determines if the packet is validfor transmission (rather than reception). As with a packet �lter for reception this process can be highly optimised.For any implementation the volatility of the bu�er memory must be taken into consideration; the driver must protectagainst the process corrupting the headers after they have been checked. This may entail copying the security related�elds of the header before checking them. Another solution may rely on caching the secure part of the header in thedevice driver's private memory and updating the per-packet �elds.For many other �elds such as checksums, the user process is the only one to su�er if they are not initialised correctly.Thus for UDP and TCP only the port values need to be secured. For IP all but the length and checksum �elds must besecured, and for Ethernet all the �elds must be secured.One �nal possible concern would be with respect to ow control or congestion avoidance; conceivably a user processcould have private code which disobeyed the standards on TCP congestion control. There are various answers to this.First, a malevolent user process could simply use UDP, which has no congestion control, instead if it wished. Second,since the operating system is designed with quality of service support, the system could easily limit the rate at which aprocess is permitted to transmit. Third, the application may in fact be able to make better use of the resources in thenetwork due to application speci�c knowledge, or by using advanced experimental code.Trailers

www.manaraa.com

16Unlike headers, trailers do not usually contain any security information. Trailers are most easily dealt with by requiringthe user process to provide enough space (or the correct padding) for the packet on both receive and transmit. If thereis not enough, the packet will simply be discarded - a loss to the user processes. Providing this space is not di�cult fora process once it is known how much is necessary; this value can be computed by a shared library or discovered usingan IPC call.Application data unitsMany applications have application speci�c basic data units which may be too large for individual network packets.For example, NFS blocks over Ethernet are usually fragmented at the IP level. Ideally a system should permit theapplication to specify receive bu�ers in such a way that the actual data of interest to the application ends up incontiguous virtual addresses.On the other hand for some applications, the application's basic data unit (i.e. the unit over which the applicationconsiders loss of any sub part to be loss of the total) may be very small. This may be found in multimedia streams suchas audio over ATM, and compressed tiled video. For such streams, the application should not have to su�er very largenumbers of interactions with the device driver; it should be able to handle the data stream only when an aggregate ofmany small data units is available.C.3 OperationThe Rbuf design separates the three issues of I/O bu�ering, namely:� The actual data.� The o�set/length aggregation mechanisms.� The memory allocation and freeing concerns.An I/O channel is comprised of a data area (for the actual data) and some control areas (for the aggregation infor-mation). The memory allocation is managed independently of the I/O channel by the owner of the memory.Data AreaThe Rbuf Data Area consists of a small number of large contiguous regions of the virtual address space. These areasare allocated by the system and are always backed by physical memory. Revocation of this memory is subject to outof band discussion with the memory system. To as large an extent as possible the memory allocator will keep thesecontiguous regions of virtual addresses backed by contiguous regions of physical addresses (this is clearly a platformdependent factor).The system provides a fast mechanism for converting Rbuf Data Area virtual addresses into physical addresses foruse by drivers that perform DMA. On many platforms a page table mapping indexed by virtual page number exists foruse by the TLB miss handler; on such platforms this table can be made accessible to device driver domain with readonly status.Protection of the data area is determined by the use of the I/O channel. It must be at least writable in the domaingenerating the data and at least readable in the domain receiving the data. Other domains may also have access to thedata area especially when an I/O channel spanning multiple domains (see section VI-C.4) is in use.One of the domains is logically the owner in the sense that it allocates the addresses within the data area which areto be used.The Rbuf data area is considered volatile and is always updateable by the domain generating the data.Data AggregationA collection of regions in the data area may be grouped together (e.g. to form a packet) using a data structure knownas an I/O Record or iorec. An iorec is closest in form to the Unix concept of an iovec. It consists of a header followedby a sequence of base and length pairs. The header indicates the number of such pairs which follow it and is padded tomake it the same size as a pair.This padding could be used on some channels where appropriate to carry additional information. For example theexact time at which the packet arrived or partial checksum information if this is computed by the hardware. [37] pointsout that for synchronisation it is more important to know exactly when something happened than getting to process itimmediately.Control AreasA control area is a circular bu�er used in a producer / consumer arrangement. A pair of event channels is providedbetween the domains to control access to this circular bu�er. One of these event channels (going from writer to reader)indicates the head position and the other (going from reader to writer) indicates the tail.A circular bu�er is given memory protection so that it is writable by the writing domain and read-only to the readingdomain. A control area is used to transfer iorec information in a simplex direction in an I/O channel. Two of thesecontrol areas are thus required to form an I/O channel and their sizes are chosen at the time that the I/O channel isestablished.Figure 6 shows a control area with two iorecs in it. The �rst iorec describes two regions within the Rbuf data areawhereas the second describes a single contiguous region.Usage

www.manaraa.com

17
Data DataData

2 1
Control
Area

Data
Area

HeadTail

Fig. 6Rbuf memory arrangementFigure 7 shows two domains A and B using control areas to send iorecs between them. Each control area, as describedabove, provides a �fo queue of iorecs between the two ends of an I/O channel. Equivalently, an I/O channel is composedof two simplex control area �fos to form a duplex management channel. The control areas are used indistinguishably nomatter how the I/O channel is being used.
Process

A
Process

B

Control Area for iorecs from A to B

Control Area for iorecs from B to A

Data Area

Fig. 7Control Areas for an I/O channel between A and BA typical I/O channel is in fact a simplex data channel operating in one of two modes. The purpose of these two modesis to allow for the support of ADUs in various contexts. Note that there is no requirement for either end of the I/Ochannel to process the data in a FIFO manner, that is merely how the bu�ering between the two ends is implemented.In Transmit Master Mode (TMM), the originator of the data chooses the addresses in the Rbuf data area, placesthe data into the Rbufs, and places the records into the control area. It then updates the head event for that controlbu�er indicating to the receiver that there is at least one record present. As soon as the downstream side has readthese records from the control bu�er it updates the other (tail) event, freeing the control bu�er space for more records.When the downstream side is �nished with the data it places the records into the control area for the queue in the otherdirection and signals its head event on that control bu�er. The originator likewise signals when it has read the returnedacknowledgement from the control bu�er. The originator is then free to reuse the data indicated in the returning controlbu�er.

www.manaraa.com

18In Receive Master Mode (RMM), the operation of the control areas is indistinguishable from TMM; the di�erence isthat the Rbuf data area is mapped with the permissions reversed and the data is placed in the allocated areas by thedownstream side. It is the receiver of the data which chooses the addresses in the Rbuf data area and passes iorecswhich indicate where it wishes the data to be placed to the downstream side. The downstream side uses the othercontrol area to indicate when it has �lled these areas with data.The Master end, which is choosing the addresses, is responsible for managing the data area and keeping track ofwhich parts of it are \free" and which are \busy". This can be done in whatever way is deemed appropriate. For someapplications, where FIFO processing occurs at both ends, it may be su�cient to partition the data area into iorecs atthe initiation of an I/O channel, performing no subsequent allocation management.Table I presents a summary of the di�erences between TMM and RMM for the diagram shown in �gure 7; withoutloss of generality A is the master - it chooses the addresses within the data area.TABLE ITMM and RMM propertiesTMM RMMChooses the Addresses A AManages data area A AWrite access to data A BRead access to data B ASince the event counts for both control areas are available to a user of an I/O channel it is possible to operate in anon-blocking manner. By reading the event counts associated with the circular bu�ers, instead of blocking on them,a domain can ensure both that there is an Rbuf ready for collection and also that there will be space to dispose ofit in the other bu�er. This functions reliably because event counts never lose events. Routines for both blocking andnon-blocking access are standard parts of the Rbuf library.C.4 Longer channelsSometimes an I/O channel is needed which spans more than two domains. An example may be a �le serving applicationwhere data arrives from a network device driver, passes to the �leserver process, and then passes to the disk driver.When such an I/O channel is set up it is possible to share certain areas of Rbuf data memory which are alreadyallocated to that domain for another I/O channel. A domain may wish to have some private Rbufs for each direction ofthe connection (i.e. ones which are not accessible to domains in the other direction) for passing privileged information.In the �leserver example, the �leserver may have Rbufs which are used for inode information which are not accessibleby the network device driver.The management of the channel may either be at one end or it may be in the middle. In the example of the �leserver,it is likely to be in TMM for communicating with the disk driver, and RMM for communicating with the network driver.The important point is that the data need not be copied in a longer chain provided trust holds.Figure 8 shows the I/O channels for a �leserver. For simplicity, this only shows the control paths for writes. Theiorecs used in the channel between the �leserver and the disk driver will contain references to both the network bu�erdata area and the private inode data area. Only the network data bu�er area is used for receiving packets. The �leserver(operating in RMM) will endeavour to arrange the iorecs so that the disk blocks arriving (probably fragmented acrossmultiple packets) will end up contiguous in the single address space and hence in a suitable manner for writing to disk.C.5 Complex channelsIn some cases the ow of data may not be along a simple I/O channel. This is the case for multicast tra�c which isbeing received by multiple domains on the same machine. For such cases the Rbuf memory is mapped readable by allthe recipients using TMM I/O channels to each recipient. The device driver places the records in the control areas ofall the domains which should receive the packet and reference counts the Rbuf areas so that the memory is not reuseduntil all of the receivers have indicated they are �nished with it via their control areas.Apart from the lack of copying, both domains bene�t from the bu�ering memory provided by the other comparedwith a scheme using copying.A problem potentially arises if one of the receivers of such multicast data is slower at processing it than the other andfalls behind. Ideally it would not be able to have an adverse a�ect on the other receiver. This can be done by limitingthe amount of memory in use by each I/O channel. When the limit is reached, the iorecs are not placed in that channeland the reference count used is one less. The bu�ers are hence selectively dropped from channels where the receiver isunable to keep up. An appropriate margin may be con�gured based on the fan-out of the connection.One approximate but very e�cient way of implementing this margin is to limit the size of the circular control bu�er.Iorecs are then dropped automatically when they cannot be inserted in the bu�er in a non-blocking manner. Even if

www.manaraa.com

19
iorecs

iorecs

Disk Device Driver

Network Device Driver

Write-Only
Fileserver

iorecs

iorecs

Data and
Inode Blocks

Written
Blocks

TMM

RMM

Where
to put

packets

Arrived
Packets

Inode
Memory
No MMU
access

to Network

Data
Memory

Writeable
by Network
readable by

Disk

Fig. 8A longer Rbuf channel: Control path for Fileserver Writesa more accurate implementation of the margin is required, the Rbuf scheme ensures that the cost is only paid for I/Ochannels where it is required, rather than in general. TABLE IIComparison of Buffering PropertiesMbufs IOBufs Fbufs Rbufspage faults possible No No Yes Noalignment OK No Yes ?? Yescopy to user process Yes No No Nocopy to clever device Yes No No Nocopy for multicast Yes Yes Yes? Nocopy for retransmission Yes Yes No Nosupport for ADUs No No No Yeslimit on resource use Yes4 No No Yesmust be cleared No5 Yes No6 No6VII. ConclusionsA. Current StateNemesis is implemented on Alpha AXP, MIPS and ARM platforms. C libraries have been ported to these platformsto allow programming in a familiar environment; this has required, amongst other things the integration of pervasives4This limit is actually as a result of socket bu�ering.5This is because of the copy to user process memory. However some networking code rounds up the sizes of certain bu�ers without clearingthe padding bytes thus included; this can cause an information leak of up to three bytes.6Bu�ers must be cleared when the memory is �rst allocated. This allocation is not for every bu�er usage in Fbufs but is still more frequentin Fbufs than in Rbufs.

www.manaraa.com

20rather than statics within the library code. Schedulers as described have been developed; the Jubilee scheduler so farhas only been implemented on the ARM platform7.A window system which provides primitives similar to X has been implemented. For experimentation this has beenimplemented both as a traditional shared server to provide server-based rendering and, in the more natural Nemesisfashion, as a library to provide client-based rendering. Experiments have shown that the client based rendering systemreduces application crosstalk enormously when best e�ort applications are competing with continuous media applicationsrendering video on the display. This work will be reported in detail in the near future.The ATM device driver for the DEC ATMWorks 750 TURBOchannel takes full advantage of the self-selecting featureof the interface to direct AAL5 adaptation units directly into memory at the position desired by the receiving domain;rendering video from the network requires a single copy from main memory into the frame bu�er. (The applicationmust check the frames to discover where they should be placed in the frame bu�er.) The combination of the ATMWorksinterface and the device driver mean that contention between outgoing ATM streams occurs only as a result of schedulingthe processor and when when cells hit the network wire.B. Future PlansNemesis is immature with much to work still to be done. It represents a fundamentally di�erent way of structuring anoperating system; indeed it could be regarded as a family of operating systems. The core concepts of events, domains,activations, binding, rbufs and minimal kernel do not de�ne an operating system. Our next task is to create the libraries,device drivers and system domains to provide a complete operating system over the Nemesis substrate.As with the window system (and indeed the �ling system and the IP protocol stack) this will often be by providingan initial server-based implementation by porting code from other platforms and then moving towards a client-basedexecution implementation. Work with the �ling system and protocol stack has just entered this second stage.As these components become stable we expect to develop (and port) applications to take advantage of the facilities,in particular the exible quality of service guarantees, available from the Nemesis architecture. We also will be usingNemesis as a means on instrumenting multimedia applications; we can trace resource usage directly to applicationdomains and thereby get an accurate picture of application performance.C. ConclusionsNemesis represents an attempt to design an operating system to support multimedia applications which processcontinuous media. The consideration of quality of service provision and application crosstalk led to a design in whichapplications execute their code directly rather than via shared servers. Shared servers are used only for security orconcurrency control.Such an organisation gives rise to a number of problems with complexity which are solved by the use of typing,transparency and modularity in the de�nition of interfaces and the use of closures to provide comprehensible, safe andextensive sharing of code and data. Application programmers can be protected from this paradigm shift; API's neednot change except when new facilities are required, the porting of the C library is a case in point.The development of a new operating system is not a small task. The work here has been developed over at least fouryears with the help of a large number of people. We are indebted to all who worked in the Pegasus project.References[1] S. J. Mullender, I. M. Leslie, and D. R. McAuley, \Operating-system support for distributed multimedia", in Proceedings of Summer1994 Usenix Conference, Boston, Massachusetts, USA, June 1994, pp. 209{220, Also available as Pegasus Paper 94{6.[2] C. J. Lindblad, D. J. Wetherall, and D. L. Tennenhouse, \The VuSystem: A programming system for visual processing of digital video",in Proceedings of ACM Multimedia, San Francisco, CA, USA, Oct. 1994.[3] G. Coulson, A.Campbell, P. Robin, G. Blair, M. Papathomas, and D. Sheperd, \The design of a QoS-controlled ATM-based communi-cation system in chorus", IEEE Journal on Selected Areas In Communications, vol. 13, no. 4, pp. 686{699, May 1995.[4] D.R. McAuley, \Protocol Design for High Speed Networks", Tech. Rep. 186, University of Cambridge Computer Laboratory, January1990, Ph.D. Dissertation.[5] D. L. Tennenhouse, \Layered multiplexing considered harmful", in Protocols for High Speed Networks, Rudin and Williamson, Eds.1989, Elsevier.[6] J. Mogul, \E�cient Use of Workstations for Passive Monitoring of Local Area Networks", in Computer Communication Review. ACMSIGCOMM, September 1990, vol. 20.[7] S. McCanne and V. Jacobson, \The BSD Packet Filter: A New Architecture for User-level Packet Capture", in USENIX Winter 1993Conference, January 1993, pp. 259{269.[8] A. Demers, S. Keshav, and S. Shenker, \Analysis and Simulation of Fair Queueing Algorithm", Journal of Internetworking: Researchand Experience, vol. 1, no. 1, 1990.[9] M. V. Wilkes and R. M. Needham, The Cambridge CAP Computer and its Operating System, North Holland, 1979.[10] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy, \Lightweight Remote Procedure Call", ACMTransactions on Computer Systems, vol. 8, no. 1, pp. 37{55, February 1990.[11] Cli�ord W. Mercer, Stefan Savage, and Hideyuki Tokuda, \Processor capacity reserves: Operating system support for multimediaapplications", in Proceedings of the IEEE International Conference on Multimedia Computing and Systems, May 1994.7This is used in an embedded application where the number of processes is small.

www.manaraa.com

21[12] Chandramohan A. Thekkath, Thu D. Nguyen, Evelyn Moy, and Edward D. Lazowska, \Implementing network protocols at user level",Tech. Rep. 93-03-01, Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, 1993.[13] P. Barham, M. Hayter, D. McAuley, and I. Pratt, \Devices on the Desk Area Network", IEEE Journal on Selected Areas In Commu-nications, vol. 13, no. 4, May 1995.[14] Yousef A. Khalidi and Michael N. Nelson, \An Implementation of UNIX on an Object-oriented Operating System", Tech. Rep. 92-3,Sun Microsystems Laboratories, Inc., December 1992.[15] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska, and Henry M. Levy, \Scheduler Activations: E�ective Kernel Supportfor the User-Level Management of Parallelism", ACM Transactions on Computer Systems, vol. 10, no. 1, pp. 53{79, February 1992.[16] D. Reed and R. Kanodia, \Synchronization with eventcounts and sequencers", Tech. Rep., MIT Laboratory for Computer Science, 1977.[17] D. Mills, \Internet Time Synchronisation: The Network Time Protocol", Internet Request for Comment Number 1129, October 1989.[18] M.J. Dixon, \System Support for Multi-Service Tra�c", Tech. Rep. 245, University of Cambridge Computer Laboratory, September1991, Ph.D. Dissertation.[19] C. L. Liu and James W. Layland, \Scheduling Algorithms for Multiprogramming in a Hard-Real-Time Environment", Journal of theACM, vol. 20, no. 1, pp. 46{61, January 1973.[20] R.J. Black, \Explicit Network Scheduling", Tech. Rep. 361, University of Cambridge Computer Laboratory, December 1994, Ph.D.Dissertation.[21] A.D. Birrell and J.V. Guttag, \Synchronization Primitives for a Multiprocessor: A formal speci�cation", Tech. Rep. 20, DigitalEquipment Corporation Systems Research Center, 1987.[22] Timothy Roscoe, The Structure of a Multi-Service Operating System, PhD thesis, University of Cambridge Computer Laboratory, April1995, Available as Technical Report no. 376.[23] Bjarne Stroustrup, The Design and Evolution of C++, Addison-Wesley, 1994.[24] Dave Otway, \The ANSA Binding Model", ANSA Phase III document APM.1314.01, Architecture Projects Management Limited,Poseidon House, Castle Park, Cambridge, CB3 0RD, UK, October 1994.[25] Andrew Birrell, Greg Nelson, Susan Owicki, and Ted Wobber, \Network Objects", Proceedings of the 14th ACM SIGOPS Symposiumon Operating Systems Principles, Operating Systems Review, vol. 27, no. 5, pp. 217{230, Dec. 1993.[26] Object Management Group, The Common Object Request Broker: Architecture and Speci�cation, Draft 10th December 1991, OMGDocument Number 91.12.1, revision 1.1.[27] Brian N. Bershad, Thomas E. Anderson, Edward D. Lazowska, and Henry M. Levy, \User-Level Interprocess Communication for SharedMemory Multiprocessors", ACM Transactions on Computer Systems, vol. 9, no. 2, pp. 175{198, May 1991.[28] E.I. Organick, The Multics System: An Examination of Its Structure, MIT Press, 1972.[29] Je�rey S. Chase, Henry M. Levy, Michael J. Feeley, and Edward D. Lazowska, \Sharing and Protection in a Single Address SpaceOperating System", Technical Report 93-04-02, revised January 1994, Department of Computer Science and Engineering, University ofWashington, Apr. 1993.[30] S. Le�er, M. McKusick, M. Karels, and J. Quarterman, The Design and Implementation of the 4.3BSD UNIX Operating System,Addison-Wesley, 1989.[31] P. Druschel and L. Peterson, \Fbufs: A High-Bandwidth Cross-Domain Transfer Facility", in Proceedings of the fourteenth ACMSymposium on Operating Systems Principles, December 1993, pp. 189{202.[32] S. Le�er and M. Karels, \Trailer Encapsulations", Internet Request for Comment Number 893, April 1984.[33] P. Druschel, L. Peterson, and B. Davie, \Experiences with a High-Speed Network Adaptor: A Software Perspective", in ComputerCommunication Review. ACM SIGCOMM, September 1994, vol. 24, pp. 2{13.[34] A. Edwards, G. Watson, J. Lumley, D. Banks, C. Calamvokis, and C. Dalton, \User-space protocols deliver high performance toapplications on a low-cost Gb/s LAN", in Computer Communication Review. ACM SIGCOMM, September 1994, vol. 24, pp. 14{23.[35] M. Yuhara, C. Maeda, B. Bershad, and J. Moss, \The MACH Packet Filter: E�cient Packet Demultiplexing for Multiple Endpointsand Large Messages", in USENIX Winter 1994 Conference, January 1994, pp. 153{165.[36] Digital Equipment Corporation TURBOchannel Industry Group, TURBOchannel Speci�cations Version 3.0, 1993.[37] C.J. Sreenan, \Synchronisation services for digital continuous media", Tech. Rep. 292, University of Cambridge Computer Laboratory,March 1993, Ph.D. Dissertation.Ian Leslie received the B.A.Sc in 1977 and M.A.Sc in 1979 both from the University of Toronto and a Ph.D. from theUniversity of Cambridge Computer Laboratory in 1983. Since then he has been a University Lecturer at the CambridgeComputer Laboratory. His current research interests are in ATM network performance, network control, and operatingsystems which support guarantees to applications.

www.manaraa.com

22Derek McAuley obtained his B.A. in Mathematics from the University of Cambridge in 1982 and his Ph.D. on ATMinternetworking addressing issues in interconnecting hetergeneous ATM networks in 1989. After a further 5 years atthe Computer Laboratory in Cambridge as a Lecturer he moved to a chair in the Department of Computing Science,University of Glasgow in 1995. His research interests include networking, distributed systems and operating systems.Recent work has concentrated on the support of time dependent mixed media types in both networks and operatingsystems. This has included development of ATM switches and devices, leading to the DAN architecture, and thedevelopment of operating systems that can exploit these systems components.Richard Black obtained a Bachelor's degree in Computer Science in 1990, and a Ph.D. in 1995, both from theUniversity of Cambridge. He has been awarded a Research Fellowship from Churchill College, to continue research atthe University of Cambridge Computer Laboratory. His research interests are on the interaction between operatingsystems and networking. Previous activities have included work on The Desk Area Network and the Fairisle ATMSwitch.Timothy Roscoe received the BA degree in Mathematics from the University of Cambridge in 1989, and the PhDdegree from the University of Cambridge Computer Laboratory in 1995, where he was a principal architect of theNemesis operating system and author of the initial Alpha/AXP implementation. He is currently Vice President ofResearch and Development for Persimmon IT, Inc. in Durham, North Carolina. His research interests include operatingsystems, programming language design, distributed naming and binding, network protocol implementation, the futureof the World Wide Web, and the Chapel Hill music scene.Paul Barham received the B.A. degree in computer science from the University of Cambridge, Cambridge, UK.,in 1992 where he is now working towards the Ph.D. degree. He is currently involved in the Pegasus, Measure andDCAN projects at the Computer Laboratory, investigating Quality of Service provision in the operating system andparticularly the I/O subsystem of multimedia workstations. His research interests include operating systems andworkstation architecture, networking, and a distributed parallel Prolog. Recent work includes the PALcode, kernel anddevice drivers for Nemesis on the DEC 3000 AXP platforms, a client-rendering window system and an extent-based�lesystem both supporting QoS guarantees.David Evers received the B.A. degree in Physics and Theoretical Physics and the Ph.D. degree in Computer Sciencefrom the University of Cambridge, Cambridge, UK., in 1988 and 1993 respectively. He is currently a member of sta� atNemesys Research Ltd. in Cambridge, where he continues to work on software support, from devices to applications,for distributed multimedia in an ATM environment.Robin Fairbairns received the B.A. degree in mathematics in 1967, and the diploma in computer science in 1968from the University of Cambridge, UK. He worked on the CAP project at the University of Cambridge ComputerLaboratory from 1969 to 1975, and has worked on digital cartography and satellite remote sensing. His current workhas been in the Pegasus and Measure projects, and he is working towards a Ph.D. investigating the provision of Qualityof Service within Operating Systems.Eoin Hyden received the B.Sc., B.E. and M.Eng.Sc. degrees for the University of Queensland, Australia, and thePh.D. from the University of Cambridge Computer Laboratory, UK. Currently he is a Member of Technical Sta� in theNetworked Computing Research department at AT&T Bell Laboratories, Murray Hill. His interests include operatingsystems, high speed networks and multimedia systems.

